Variational Consensus Monte Carlo

نویسندگان

  • Maxim Rabinovich
  • Elaine Angelino
  • Michael I. Jordan
چکیده

Practitioners of Bayesian statistics have long depended on Markov chain Monte Carlo (MCMC) to obtain samples from intractable posterior distributions. Unfortunately, MCMC algorithms are typically serial, and do not scale to the large datasets typical of modern machine learning. The recently proposed consensus Monte Carlo algorithm removes this limitation by partitioning the data and drawing samples conditional on each partition in parallel [22]. A fixed aggregation function then combines these samples, yielding approximate posterior samples. We introduce variational consensus Monte Carlo (VCMC), a variational Bayes algorithm that optimizes over aggregation functions to obtain samples from a distribution that better approximates the target. The resulting objective contains an intractable entropy term; we therefore derive a relaxation of the objective and show that the relaxed problem is blockwise concave under mild conditions. We illustrate the advantages of our algorithm on three inference tasks from the literature, demonstrating both the superior quality of the posterior approximation and the moderate overhead of the optimization step. Our algorithm achieves a relative error reduction (measured against serial MCMC) of up to 39% compared to consensus Monte Carlo on the task of estimating 300-dimensional probit regression parameter expectations; similarly, it achieves an error reduction of 92% on the task of estimating cluster comembership probabilities in a Gaussian mixture model with 8 components in 8 dimensions. Furthermore, these gains come at moderate cost compared to the runtime of serial MCMC—achieving near-ideal speedup in some instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Between Classical and Quantum Monte Carlo Methods: “Variational” QMC

The variational Monte Carlo method is reviewed here. It is in essence a classical statistical mechanics approach, yet allows the calculation of quantum expectation values. We give an introductory exposition of the theoretical basis of the approach, including sampling methods and acceleration techniques; its connection with trial wavefunctions; and how in practice it is used to obtain high quali...

متن کامل

Variational Monte Carlo for Interacting Electrons in Quantum Dots

We use a variational Monte Carlo algorithm to solve the electronic structure of two-dimensional semiconductor quantum dots in external magnetic field. We present accurate many-body wave functions for the system in various magnetic field regimes. We show the importance of symmetry, and demonstrate how it can be used to simplify the variational wave functions. We present in detail the algorithm f...

متن کامل

Variational wave function for a two-electron quantum dot

We have applied the variational quantum Monte Carlo technique to a two-electron quantum dot. A simple variational wave function is presented and we compare the results obtained using it with exact numerical diagonalizations. The comparison shows that almost exact results are obtained for lowest energy states of different relative angular momenta. ( 1998 Elsevier Science B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015